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The notions of the left (right) Jordan groupoids are introduced. If R is an associative

* ring with the identity and if U(R) [resp. P(R)] denotes the set of all idempotents

(resp. projections) of the * ring R, then the operations p O g = p ~ 2pg — 2gp
t

+4gpgandp O g =g~ 2pq = 2qp + 4pgp. if p, g € UR) [resp. p. g =

P(R)], are the nonassociative linear operations in U(R) [resp. in P(R)]. The present

paper shows that the operations O and O are associative iff pg = gp forp, q €

U(R) [resp. p,q € P(R)]. Asa corollary 1t follows from this that the orthomodular

poset (U(R), =, 0, 1, ') is a Boolean algebra [which is commutative, i.c., pg =

gp, p, 9 € UR)] iff (UR), 0,0, 1, Yor (UR), 0, 0, 1, ') are Jordan associative
1 2

groupoids. Similar results hold for (P(R), =, 0, 1, ).

INTRODUCTION

Let R be an associative * ring with the identity, and let U(R), resp. P(R),
be the sets of all idempotents, resp. projectors, of the * ring R. (The element
e € R is an idempotent, resp. a projector, of R if €* = e, resp. €2 = e = e*.)

Easy ring-theoretic computations show that the definition

e<foe=fe=e, e, f € UR) [resp. e, f € P(R)]

yields to a partial ordering on U(R), resp. P(R). If the ring R has an identity,
and if ¢ € U(R), resp. ¢ € = P(R), then the setting ¢’ = | — e defines the
orthocomplementations on U(R), resp. P(R). It is well known (Flachsmeyer,
1982; KatrnoSka, 1980) that the sets U(R), resp. P(R), are in general the
orthomodular orthocomplemented posets, which need not be the lattices.
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Another way of characterizing the set U(R), resp. P(R), of all idempo-
teats, resp. projectors, of the * ring R gives so-called left (right) Jordan
groupoids of idempotents U(R), resp. projectors P(R) of the * ring R.

For p, g € U(R), resp. p, g € P(R), we define

p?q=p*2pq*2qp+4qpq
sﬂgq=q—2p4—2qp+4pqp

It can be shown that p O g and p O ¢ belongs to U(R). [When p, ¢ €
1 2
P(R), then p © g and p © g belong to P(R).] For every p € U(R) [resp. p e
1 2

P(R)] we put p’ = 1 — p, and we claim that p’ is an orthocomplement of
p. The sets (U(R), O, 0, 1, ") and (P(R), 0,0 L "y are then the Jordan

groupoids of the idempotents, resp. projectors, of the * ring R.

Katrnogka (1980) shows that the elements p, ¢ € U(R), resp. p, g €
P(R), are orthogonal (we write thenp L q) if pg = qp = O and p, ¢ € U(R),
resp. p, g € P(R), are compatible if pg = gp.

1. SOME NOTIONS AND DEFINITIONS
We can now formalize the situation in the following definition.

Definition 1.1 (Katrno$ka, 1993). The nonempty set X #+ O will be called
a left Jordan groupoid if on X are defined a binary operation 0: X X X —
X and a unary operation ': X — X so that:

i) pop=pifpe X

(i) (pOog@Op=p0O(qOp),p,qeX

(i) (pog)oqg=p,ifp,geX

iv) (p)Y =ppeX

(v) (poq)’ =p ' ©q,p,qeX

(vi) poq'=pOg,p.qgeX

(vii)) X has the elements 0 € Xand 1 € Xsuchthatpo 1l =p, 10
p=1L,po0=p,00p=0,and 0 = 1.

Remark 1.2. From (i) and (1) of Definition 1.1 it follows that
pPo@op)=[popoqiop if pgeX

In general the left Jordan groupoid is noncommutative and also nonassocia-
tive. For more on this see KatrnoSka (1993). We denote the left Jordan
groupoid of X by (X, G, 0, 1, ")
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Example 1.3. If U(R), resp. P(R), are the sets of all idempotents, resp.
projectors, of the * ring R with the identity, then (U(R), O, 0, 1, '), resp.

(P(R), 0,0, 1,") (i = 1, 2) are the left Jordan groupoids. The operations ©:
UR) ><l U(R) — U(R), resp. O: P(R) X P(R) = P(R) (i=1,2)are defineld
by setting l

pOoq=p=2pq = 2gp +4qpq.  p.q€ U(R) [resp. p, g € P(R)]

p (29 oq=q—2pq—2qp + 4pgp, p,q € UR) [resp. p, g € P(R)]

and the orthocomplement p’ of p € U(R) [resp. p € P(R)] by p’ =1 — p.

2. THEOREM OF THE CHARACTERIZATION
Our main aim is to prove the following theorem.

Theorem 2.1. Let R be an associative * ring with the identity of the
characteristic # 2 and let U(R), resp. P(R), be the sets of all idempotents,
resp. projectors, of the * ring R. Then (U(R), =<, 0, 1, ), resp. (P(R), =, 0,
1, ) are the commutative Boolean algebras iff (U(R), <1), 0, 1, "), resp. (P(R),

0, 0, 1, ') are associative left Jordan groupoids.
1

Proof. (a) Necessary condition. We suppose that, for example, (U(R),
=, 0, 1, ") is a commutative Boolean algebra. If p, ¢ € U(R), and also pg
= gp, then

p ? q=p
and we obtain
(POQOr=pOr=p=po(gon, pgre UR)
The groupoid (U(R), O, 0, 1, ') is also associative.
(b) The conditiori is sufficient. We show that if

(p?q)?q=p?(q?q) for p,q € UR)

then pg = gp.
By (i) of Definition 1.1

(p?q)?q=p?q
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Therefore we have
(p — 2pq — 2qp + 4qpq) ©q=p = 2pq~ 2qp + 49pq
From the last equation it follows that
p — 2pq — 2qp + 4qpq — 2pq + 4pq + 4qpq — 8qpp

— 2gp + 4qpq + 4qp — 8qpq + 4qpq — 84pq — 8qpq + 16gpg

=p — 2pq — 2qp + 4qpq
Then

2pq + 2g9p — 4qpq = 0 (D)

The multiplication of equation (1) on the right side and then on the left side
by g gives

2pq + 2q9pq — 49pq =0,  2qpq + 2qp — 4qpq = 0 )
Further computations yield
2pg = 2qp
But the characteristic of R is different from 2. Therefore it follows that pg
=gp,p,q € UR),and p O q = p. If p, q, v € U(R), then we have
1
Pq = gp, pr =1rp, rq = qr

It must also necessary hold that
(p?q)?r=p?r=p=p?(q?r)
and the groupoid (U(R), O, 0, 1, ') is also associative. QED
1

I want to emphasize that Theorem 2.1 gives the characterization of those
Boolean algebras that have commuting elements [i.e., if p, ¢ € U(R), then

pq = qp).

3. SOME CONSEQUENCES

Finally we show the validity of a proposition concerning the orthogonal
and compatible elements of (U(R), =, 0, 1, "), resp. (P(R), =, 0, 1, ).

Proposition 3.1. Let R be an associative * ring with the identity, and
let U(R), resp. P(R), be the set of all idempotents, resp. projectors, of the
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* ring R. If for p, g € U(R), resp. p, ¢ € P(R), we have p <> g, then p O g
1

= p, resp. p O g = p, and conversely.
2

Proof. Let p, ¢ € U(R); then p < q implies pg = qp and we have
pOq=p—2pq — 2qp + 4gpq = p and conversely. QED
1

Remark 3.2. If for p, ¢ € U(R), resp. p, g € P(R),p L g, thenp © q.
Also, when p L g, then, according to Proposition 3.1, p O g = p.
1

REFERENCES

Flachsmeyer, J. (1982). Note on orthocomplemented posets, in Proceedings Conference on
Topology and Measure IX, Part 1, Greifswald, pp. 67-75.

Katrnoska, F. (1980). Logiky a stavy fysikdlnich systémi, Thesis.

Katrnoska, F. (1993). On some automorphism groups of logics, Tatra Mountains Mathematical
Publications, 3, 13-22.



